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Abstract. Simplified double-exchange model including transfer of the itinerant electrons with spin parallel
to the localized spin in the same site and the indirect interaction J of kinetic type between localized spins
is comprihensively investigated. The model is exactly solved in infinite dimensions. The exact equations
describing the main ordered phases (ferromagnetic and antiferromagnetic) are obtained for the Bethe lattice
with z → ∞ (z is the coordination number) in analytical form. The exact expression for the generalized
paramagnetic susceptibility of the localized-spin subsystem is also obtained in analytical form. It is shown
that temperature dependence of the uniform and the staggered susceptibilities has deviation from Curie-
Weiss law. Dependence of Curie and Néel temperatures on itinerant-electron concentration is discussed to
study instability conditions of the paramagnetic phase. Anomalous temperature behaviour of the chemical
potential, the thermopower and the specific heat is investigated near the Curie point. It is found for J = 0
that the system is unstable towards temperature phase separation between ferromagnetic and paramagnetic
states. A phase separation connected with antiferromagnetic and the paramagnetic phases can occur only at
J∗ > J∗ ' 0.318. Zero-temperature phase diagram including the phase separation between ferromagnetic
and antiferromagnetic states is given.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.)

1 Introduction

Double exchange (DE) is one of the forms of indirect ex-
change interaction between the localized magnetic mo-
ments via itinerant electrons [1–4]. Historically, it arose
in connection with experimental study of the hole-doped
manganese oxides La1−xMxMnO3, where M = Sr, Ca, Ba
or Pb [5], and with the ascertainment of the close con-
nection between electric and magnetic properties of these
substances (for a review see Ref. [6]).

Usually, the double-exchange mechanism is considered
in the frame of the s− f (or s− d) model which was first
defined by Vonsovskii in 1946 [7]. The Hamiltonian of the
s− f model in the Wannier representation has the form

H =
∑
〈ij〉σ

tija
†
iσajσ − I

∑
iσσ′

(Sis)σσ′a
†
iσaiσ′ (1)

where Si is the operator of localized spin at the site with
number i, s are the Pauli matrices, aiσ is the annihilation
operator of itinerant electron with the spin projection σ
in the i-th site, tij is the transfer integral (tij = tji) and
I denotes the intraatomic exchange interaction between
localized and itinerant electrons. It is assumed that I > 0.

A main feature of the double-exchange mechanism is
the rigorous parallelism (or antiparallelism in the case of
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I < 0) of the localized and the itinerant-electron spins in
the same site. The ferromagnetic ordering is possible only
at this condition. It is easy to see that double occupation
of the magnetic site by itinerant electrons is excluded in
this case. Therefore, the double-exchange mechanism is
realized in the s − f system at the limit I → ∞, and
the effective Hamiltonian of double exchange presents the
transfer process of an itinerant electron from one singly
occupied site j to another unoccupied site i with the spin
parallel to the localized spin at either site:

Hdex =
∑
〈ij〉σ

tijc
†
iσcjσ (2)

where ciσ
(
c†iσ
)

is the annihilation (creation) operator of
the itinerant electron with the spin parallel to the localized
spin. In quantum case, this operator looks like [4]

ciσ =
∑
σ′

(
P+
i

)
σσ′

(1− a†i−σ′ai−σ′)aiσ′ (3)

where (
P+
i

)
σσ′

=
(S + 1)δσσ′ + (Sis)σσ′

2S + 1
(4)

is the projection operator to the state of an electron at
the i-th site with the spin parallel to the localized spin.



20 The European Physical Journal B

In the case of the classical localized spins, where Si =
(sin θi cosϕi, sin θi sinϕi, cos θi), ciσ has the form

ciσ =
1
2

∑
σ′

{
δσσ′ + (Sis)σσ′

}
aiσ′ . (5)

Using the transformation [8]

bi = cos
θi
2
ai↑ + sin

θi
2

e−iϕiai↓, (6)

we obtain a system of the spinless fermions [9]

Hdex =
∑
〈ij〉

t̃ijb
†
ibj (7)

with the effective transfer integral

t̃ij = tij

(
cos

θi
2

cos
θj
2

+ sin
θi
2

sin
θj
2

e−i(ϕi−ϕj)
)
. (8)

It should be noted that Hdex with ciσ from (3) (see
Ref. [4]) has a complicated mathematical structure, and
correct investigation of DE with the help of this Hamilto-
nian is very difficult task. Therefore, theoretical study of
DE is carried out, in the main, either on the basis of the
Hamiltonian (1) at the limit I →∞ or in the frame of the
Hamiltonian (7) (often without Berry phase).

For the system with the Hamiltonian (1), the more
important results were obtained with the help of different
computational techniques (the Monte-Carlo method, the
Lanczos algorithm, the density-matrix renormalization-
group method). In particular, it was shown [10–13] that
phase diagram has three dominant regions: (i) a ferro-
magnetic phase, (ii) phase separation between hole-poor
antiferromagnetic and hole-rich ferromagnetic states, and
(iii) a phase with incommensurate spin correlations. The
regime of phase separation was discussed with possible
experimental consequences for the manganese oxides.

For investigation of systems with the Hamiltonian (7),
the various versions of static mean-field approximation
were offered [14–23]. The basis of these versions is a de-
coupling procedure of the Hartree-Fock type with different
modifications taking account of the features of considered
system. On the whole, we have a few contradictory results
which give different numerical estimates of the same phys-
ical quantities (for example, for the Curie temperature of
the pure DE system).

It should be noted in connection with it that mean-field
approximation for strongly correlated electron systems is
not trivial and it is not identical to the Hartree-Fock ap-
proximation. These approximations are identical for sys-
tems with intersite interaction of Coulomb or exchange
type (the Heisenberg model, the model of interacting spin-
less fermions [24]). As the mean-field approximation is ex-
act for the mentioned models in infinite-dimensional space
and hypercubic crystals with the infinite number of near-
est neighbours, there is opinion that correct mean-field ap-
proximation for the strongly correlated electron systems
arises at exact solution of the corresponding models in in-
finite dimensions and subsequent utilization of obtained

solution for real systems. Approximation obtained by this
way does not take account of spatial fluctuations but it
contains dynamical fluctuations. Therefore, it is called the
dynamical mean-field approximation.

The foundation of the theory of strongly correlated
systems in infinite dimensions was developed in the pa-
pers of Metzner, Vollhardt [25] and Müller-Hartmann [26]
(for a review see Refs. [27,28]). Furukawa [29,30] has used
these ideas for a development of a theory of the man-
ganese oxides on the basis of the Hamiltonian (1) with
the classical localized spins (S →∞). He has shown that
a more accurate calculation of some physical quantities
gives a good agreement with experimental data. In par-
ticular, the accurate treatment of the model (1) gives a
suppression of the ferromagnetic transition temperature
TK in contrast with the estimate of TK in reference [14].
Moreover, Furukawa has concluded that the DE alone ex-
plains the main physical properties (in particular, magne-
toresistance) of La1−xSrxMnO3, and LSMO is a canonical
DE system (however, see Ref. [31]).

It should be noted that the principal Furukawa’s equa-
tions are enough complicated, and their solution requires
either an iterative numerical evaluation or utilization of
unphysical density of states such as the Lorentzian DOS.
Note that use of the Lorentzian DOS for study of ferro-
magnetic phase is dangerous because it has the infinite
width.

In our recent paper [32], we have offered a simple model
of double exchange, which allows analytically to carry out
necessary calculations (in particular, to obtain analytical
expression for the band Green’s function) in the dynam-
ical mean-field approximation for the Bethe lattice with
z → ∞. We have defined c-operator of annihilation of a
itinerant electron with spin parallel to localized spin as
(see also Ref. [33])

ciσ = P+
iσaiσ , P+

iσ =
1
2

(1 + σSzi ) (9)

where Szi S
z
i = 1 and P+

iσP
+
iσ = P+

iσ. One can see that: (i)
c-operator (9) does not contain the factor (1− a†i−σai−σ).
In my opinion, this factor is irrelevant here because the
double occupation of a site by itinerant electrons is ex-
cluded with the help of the projection operator P+

iσ, (ii)
c-operator does not take account of spin-flip processes.
These processes are essential at low temperatures where
thermodynamics of the system is defined, in the main, by
the spin-wave excitations. However, one may neglect the
spin flips for understanding of the qualitative bahaviour of
physical quantities in a wide temperature range. In addi-
tion, it should be noticed that a crucial role in the electric
transport near the Curie point TK belongs to spatial cor-
relation of localized spins [14,23,34,35]. This correlation
is included in our simple model but it is beyond the dy-
namical mean-field approximation.
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In the present paper, we consider the system defined
by the following Hamiltonian

H = −1
2

∑
i

hiS
z
i − µ

∑
iσ

c†iσciσ

+
∑
〈ij〉σ

tijc
†
iσcjσ −

∑
〈ij〉

Jijni↑nj↓ (10)

where niσ = c†iσciσ, and the c-operator is defined by the
relation (9). tij and Jij are equal to t and J for the nearest
neighbours, and Jz = J∗ at z → ∞. For calculations of
magnetization of the localized-spin subsystem and corre-
sponding generalized paramagnetic susceptibility, we as-
sume that the magnetic field hi acts only on the localized
spins. At the end of calculations, hi → 0.

In contrast with the reference [32], we have added the
term proportional to J where J ∼ t2/I. This term is re-
sponsible for a possible antiferromagnetic ordering. The
Hamiltonian (10) is the t−J like effective Hamiltonian for
the s−f model with localized spins of Ising type. It can be
obtained, for example, from the t−J like effective Hamil-
tonian for the full s−f model [8] with the our c-operators
by the neglecting of the term with the following operator
structure: c†iσci−σc

†
j−σcjσ. This term is also proportional

to J but it is accountable for the spin-flip processes and
its contribution to the dynamical mean-field approxima-
tion is equal to zero. In addition, note that c†iσci−σ = 0
for our c-operator (9). Superexchange interaction of the
antiferromagnetic type is not considered.

The present paper is organized as follows. In Section 2,
the exact theory of the model (10) in infinite dimensions is
given. The obtained in this Section equations for the band
Green’s function can be solved in analytical form for the
Bethe lattice (z → ∞) which is considered in the follow-
ing Sections. In Section 3, instability of the paramagnetic
phase towards ferromagnetic and antiferromagnetic states
is investigated. Properties of the ferromagnetic and the
antiferromagnetic states for the Bethe lattice are studied
in Sections 4 and 5. A zero-temperature phase diagram in-
cluding the phase separation between ferromagnetic and
antiferromagnetic states is given in Section 6. Some con-
cluding remarks are given in the last section.

2 Simple double-exchange model in infinite
dimensions

In order to obtain the exact results for the model (10) in
infinite dimensions, let’s present the Hamiltonian of this
model in the form suitable for the direct utilizing of the
results of reference [32].

As the Hartree-Fock approximation is exact in infi-
nite dimensions for intersite interactions [26], the last term
of (10) can be decoupled as

−
∑
〈ij〉

Jij
(
〈nj↓〉ni↑ + 〈nj↑〉ni↓

)
, (11)

and the Hamiltonian (10) can be written by the following
way

H = H0 +Hint, (12)

H0 = −1
2

∑
i

hiS
z
i +

∑
iσ

εiσc
†
iσciσ, (13)

Hint =
∑
〈ij〉

∑
σ

tijc
†
iσcjσ, (14)

εiσ = −µ−
∑
j

Jij〈nj−σ〉. (15)

Hint is the perturbation operator.
Now, one can use the diagrammatic method offered in

references [32,33] for a calculating of the band Green’s
function

Gσ(i, i′; τ − τ ′) = −〈Tτ c̃iσ(τ)c̃†i′σ(τ ′)〉 (16)

which obeys the following equation∑
i1

{[
(G0

sσ)ii
]−1

δii1 −Σii1
sσ − tii1

}
Gi1i′sσ = δii′ (17)

where

(G0
sσ)ii

′
=

δii′

iωs − εiσ
, (18)

Gii′sσ ≡ Gσ(i, i′; iωs), Σii′

sσ ≡ Σσ(i, i′; iωs) (19)

and ωs = (2s+ 1)πT .
The self-energy part is a local function in infinite di-

mensions [25,26]

Σii′

sσ = Σii
sσδii′ (20)

and, as a result, we obtain the following expression for
Σii
sσ [32]

Σii
sσ = −

1
2 (1− σmf

i )
Giisσ

· (21)

where mf
i = 〈Szi 〉.

This result is similar to the expression for the self-
energy partΣii

s in the spinless Falicov-Kimball model with
large interaction in infinite dimensions [36].

The equations (17), (20) and (21) are the equations
for Giisσ , the diagonal part of Gii′sσ , and Σii

sσ. In the follow-
ing Sections we shall show that these equations are ex-
actly solved in analytical form in the case of Bethe lattice
with z →∞ both for ferromagnetic and antiferromagnetic
phase.

The equation for mf
i can be also obtained with the

help of the diagrammatic technique for the c-operators.
Using the results of reference [32], we have

mf
i = tanh

1
2
λi, λi = λ0

i + ηi (22)
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where

λ0
i = yfi + ln

1 + exp (βµr − ysi )
1 + exp (βµr + ysi )

, (23)

yfi = βhi, ysi =
1
2
β
∑
j

Jijm
s
j , (24)

ηi =
∑
s

{
ln

(1 +mf
i )(G0

s↑)
ii

2Giis↑
− ln

(1−mf
i )(G0

s↓)
ii

2Giis↓

}
,

(25)

β = 1/T , ms
i = 〈ni↑〉− 〈ni↓〉, µr = µ+J∗n/2 is the renor-

malized chemical potential and n = 〈ni↑〉 + 〈ni↓〉 is the
total concentration of itinerant electrons; we assume that
the subsystem of itinerant electrons has a homogeneous
charge distribution.

It is necessary to note that the average

〈Szi 〉0 =
Tr
(
e−βH0Szi

)
Tr e−βH0

(26)

is required to calculate mf
i . It is determined with taking

into account that a site has four states: two states without
itinerant electrons and two states in which spin of a single
band electron is parallel to localized spin. Therefore,

〈Szi 〉0 =
sinh

(
1
2y
f
i

)
+ eβµr sinh

(
1
2y
f
i − ysi

)
cosh

(
1
2y
f
i

)
+ eβµr cosh

(
1
2y
f
i − ysi

) = tanh
1
2
λ0
i .

(27)

From equation (22), one can obtain the expression for
the generalized paramagnetic susceptibility as a derivative
of mf

i with respect to hi′ :

χ(i, i′) =
dmf

i

dhi′

∣∣∣∣∣
mfi ,m

s
i ,hi′→0

. (28)

For this purpose, it is convenient to use the method
of reference [37], and we have the following expression for
the Fourier transform χ(q) of χ(i, i′):

χ(q) =
1
2

T − 1
2

[
Y (q) − V 2(q)Jeff(q)

] (29)

where

Jeff(q) =
J(q)

1− J(q)Z(q)
, (30)

V (q) = T
∑
s

Gsχ0
s(q)

G2
s − 1

2χ
0
s(q)

, (31)

Y (q) = 2T
∑
s

G2
s − χ0

s(q)
G2
s − 1

2χ
0
s(q)

, (32)

Z(q) = T
∑
s

G2
sχ

0
s(q)

G2
s − 1

2χ
0
s(q)

, (33)

χ0
s(q) =

1
N

∑
k

Gs(k)Gs(k + q) (34)

and Gs is the band Green’s function Giisσ taken at hi =
mf
i = ms

i = 0.
We shall be in need of the internal energy. We have

E(T ) =
∑
〈ij〉σ

tij〈c†iσcjσ〉 −
∑
〈ij〉

Jij〈ni↑〉〈nj↓〉

= T
∑
s

∑
iσ

{
−1

2
σmf

i +
(

iωs + µr −
1
2
σ
∑
j

Jijm
s
j

)
Giisσ
}

−1
4
J∗Nn2 +

1
4

∑
〈ij〉

Jijm
s
im

s
j . (35)

3 Instability of the paramagnetic phase

In this and the following Sections, we shall consider the
Bethe lattice with z → ∞ for which density of state has
the form

ρ0(ε) =
4
πW

√
1− (2ε/W )2, −1

2
W < ε <

1
2
W (36)

where W is the bare bandwidth.
In the case of the Bethe lattice, the system of the equa-

tions (17) and (21) for Giisσ and Σii
sσ is exactly solved in

analytical form, and we have the following expression for
the function Giisσ ≡ Gs:

Gs =
8
W 2

{
Ωs −

√
Ω2
s −W 2/8

}
, (37)

Ωs = iωs + µr, for the paramagnetic phase (mf
i = ms

i =
hi = 0).

It is seen from (37) that the correlation bandwidth
is equal to W/

√
2 in the paramagnetic state. This

value coincides with the fermion bandwidth obtained in
reference [23] in infinite temperature limit.

We shall consider the susceptibility (29) in two cases:
q = 0 (uniform susceptibility) and q = Q = (π, π, . . . π)
(staggered susceptibility).

In the case of q = 0, we have J(0) = J∗,

χ0
s(0) =

Gs
Ωs −Σs − a2Gs

, (38)

a2 = W 2/8, and

χ(0) =
1
2

T − 1
2

[
Y (0)− V 2(0)Jeff(0)

] , (39)

Jeff(0) =
J∗

1 + J∗Y (0)/a2
, (40)

V (0) =
1
π

π∫
0

dtf(a cos t), (41)

Y (0) = −a
π

π∫
0

dt cos tf(a cos t)

= −a2 1
π

π∫
0

dt sin2 t
df(a cos t)
d(a cos t)

, (42)
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f(x) = [expβ(x − µr) + 1]−1 is the Fermi-Dirac function
with the renormalized chemical potential µr.

In the case of q = Q, we have J(Q) = −J∗,

χ0
s(Q) =

Gs
Ωs −Σs

(43)

and

χ(Q) =
1
2

T − 1
2

[
Y (Q)− f2(0)Jeff(Q)

] , (44)

Jeff(Q) = − J∗

1 + J∗Y (Q)/a2
, (45)

Y (Q) =
a

π

π∫
0

dt
sin2 t

cos t
f(a cos t). (46)

The expressions (39) and (44) must be used jointly
with the following equation

1
2
n = T

∑
s

Gs =
1
π

π∫
0

dt sin2 tf(a cos t) (47)

for the chemical potential µ.
It is easy to see that the high-temperature expansion

of χ(0) taken at J∗ = 0 contains only odd powers of
1/T . Similar situation was marked long ago in reference [2]
where double exchange was considered in the scope of a
two-atom system. The high-temperature expansion of the
uniform susceptibility in reference [2] does not include the
term proportional to 1/T 2, which is what served the au-
thors of reference [2] as a reason for concluding that the
susceptibility obeys Curie law at high temperatures, and
that it has inverse curvature in comparison with Heisen-
berg one at low temperatures. Our dynamical mean-field
calculations for the Bethe lattice confirm this qualitative
conclusion (see also Ref. [32]).

The exact high-temperature expansion (EHTE) of the
uniform susceptibility for the z-coordinated Bethe lat-
tices and s.c. lattice shows that, although the series for
χ(0) contains only odd powers of 1/T for these lattices,
χ(0) has Curie-Weiss behaviour for all electron concentra-
tions [38]. (Curie-Weiss behaviour of χ(0) was also found
in reference [39] for 1D and 2D systems). EHTE method
had given good results for the Heisenberg and the Ising
models for which enough terms in series for χ(0) were cal-
culated. Unfortunately, the authors of reference [38] have
not informed about the amount of calculated terms but
it seems that a discussion of the critical behaviour of DE
system requires a more advanced calculation.

Similar temperature behaviour is also observed for the
inverse staggered susceptibility (J∗ 6= 0) at n < 1. How-
ever, χ(Q) exactly obeys Curie-Weiss law at n = 1. In this
case, the model (10) has the form

H =
1
4

∑
〈ij〉

JijS
z
i S

z
j , (48)

and Néel temperature TN is equal to J∗/2.
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Fig. 1. Electron-concentration dependences of Curie temper-
ature (solid curve) and Néel temperature (dashed curve) for
different values of J∗. The inset shows Curie temperature as a
function of electron concentration at J∗ = 0 (see the text).

Investigation of the critical behaviour of the staggered
susceptibility for any n requires also a more accurate anal-
ysis.

Electron-concentration dependences of the transition
temperatures TK and TN are shown in Figure 1. We ob-
serve the expected suppression of TK and the increasing of
TN due to J-interaction. Problem of phase state below the
intersection point of TK and TN curves at given J∗ requires
additional investigation. In Section 6, we shall show that
the system (10) is unstable towards the phase separation
between ferromagnetic and antiferromagnetic states when
T = 0.

The inset to Figure 1 shows dependence of TK on the
electron concentration n (solid curve) at J∗ = 0. Dotted
curve is the scaled plot of n(1− n). Dashed-dotted curve
presents TK calculated from the following expression

TK =
1
2
a

1
π

√
1− (εF/a)2 =

W 2

16
ρ(εF) (49)

where ρ(ε) is the density of states of the correlation band.
The formula (49) can be obtained from Y (0) (see (42))
taken at T = 0. As Y (0)/a2 has the form of the polariza-
tion operator taken at the zero momentum, we think that
the expression (49) is suitable in the dynamical mean-field
approximation for any crystal.

The maximum value of 2TK/W is equal to 0.108 (n =
0.5). When W ∼ 1 eV (this estimate of W is used by
Furukawa [30]), TK ∼ 630 K. However, taking into ac-
count that: (i) TK is measured in materials with non-zero
J∗ (apparently, 2J∗/W ∼ 0.1) or (and) non-zero superex-
change interaction and at 0.6 < n < 0.8, (ii) mean-field
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theory always overestimates the value of transition tem-
perature, (iii) TK is essentially decreased when the coor-
dination number z is decreased (see Ref. [38]), one can
conclude that double exchange alone can in principle ex-
plain the values of TK at least for the high-TK manganese
oxides (e.g. LSMO where TK ' 380 K). This consequence
agrees to the Furukawa’s conclusion about capability of
DE to explain the value of TK in LSMO. In connection
with it, see references [10,11,15,17,18,22,29,38–41] where
were obtained still smaller values of TK.

4 Ferromagnetic phase

In this case,

ms
i = ms, mf

i = mf , (50)

Giisσ ≡ Gs =
8
W 2

{
Ωs − σν −

√
(Ωs − σν)2 − a2

σ

}
, (51)

and we have the following equations

mf = tanh
1
2
λF, (52)

λF =
1
π

π∫
0

dt ln
1 + expβ(µr − ν − a↑ cos t)
1 + expβ(µr + ν − a↓ cos t)

, (53)

n =
∑
σ

(1 + σmf )
1
π

π∫
0

dt sin2 tf(aσ cos t+ σν), (54)

ms = nmf + [1− (mf )2]

×
∑
σ

σ
1
π

π∫
0

dt sin2 tf(aσ cos t+ σν), (55)

a2
σ =

1
8
W 2(1 + σmf ), ν =

1
2
J∗ms (56)

describing the ferromagnetic phase (the formula (3.22) in
Ref. [32] has a numerical mistake — the factor 1/2 before
η is lacking). The equations (52), (54) and (55) determine
mf , ms and µ at given n and J∗.

The band picture is defined by the quantity aσ which
is the halfwidth of the correlation band for σ-electrons.
When mf is decreased, ↑-subband is narrowed and ↓-
subband is extended. a↑ = a↓ = a = W/2

√
2 in the para-

magnetic case.
Correlation change of subbandwidths is responsible for

many properties of ordered phases. In particular, it natu-
rally accounts for negative temperature shift of the chemi-
cal potential in the ferromagnetic state (see also Ref. [30]).
It turns out that approximately

µ(T ) = µ(TK) + α(n)(TK − T ), (57)

α(n) > 0, in a wide temperature range below TK at J∗ =
0. In the paramagnetic phase,

µ(T ) = µ(TK) + β(n)(T − TK), (58)
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Fig. 2. (a) The electron concentration as a function of the
chemical potential for different temperatures, (b) temperature
phase diagram of DE system for J∗ = 0: solid curve is the
Curie-temperature curve (see the inset to the Fig. 1), dotted
curve determines the region with the negative compressibility
and dashed-dotted curve determine the phase separation (PS)
region. F(P) denotes ferromagnetic (paramagnetic) state. The
point M is the point in which two PS-transition curves are
converged.

where β(n) > 0. Thus, dµ/dT changes a sign at T = TK.
If we accept that the thermopower is propotional to
dµ/dT [17], it roughly have a jump at T = TK in our
approach. When T < TK, the thermopower anomalously
has the negative sign. In the paramagnetic phase, the tem-
perature dependence of the bandwidth vanishes, and the
usual sign is restored.

Let us consider µ-dependence of the electron concen-
tration n, which is shown in Figure 2a for J∗ = 0 and
different T . Break in a curve occurs at some critical value
nc of n such that the ferromagnetism arises at n < nc

for given T . For the curve 1 (T = 0) nc = 1. It is seen
from Figure 2a that there are temperatures for which the
compressibility dn/dµ has the negative sign. (Influence
of critical long-wave charge fluctuations on resistivity in
DE system near dn/dµ = ∞ is discussed in Ref. [13]). It
means that the system is unstable towards phase separa-
tion (PS) at these temperatures. The (n, T )-region with
the negative dn/dµ is shown in Figure 2b where the re-
sults of Maxwell construction are also presented. One can
distinguish two features of PS at J∗ = 0: (i) the point
M, in which two PS-transition curves (they determine
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Fig. 3. Specific heat as a function of temperature for J∗ =
0 and different values of n. The inset shows dependence of
1− cv(T )/cv(TK) on (mf)2 at the same values of n (the same
types of curves) for DE system and for the Heisenberg system
(dotted curve) in the mean-field approximation.

concentrations of electron-poor and electron-rich spatial
regions for given T ) are converged, is inside of the ferro-
magnetic phase region, (ii) the absence of PS at T = 0.
The last feature is marked in reference [17] where PS was
investigated in the frame of a static mean-field approxi-
mation. In contrast with our results, the M-point in the
phase diagram of reference [17] is inside of the param-
agnetic region. Thus, PS of this type is temperature ef-
fect of the DE system with J∗ = 0. The system separates
into electron-rich regions with the paramagnetic state and
electron-poor regions with the ferromagnetic state at non-
zero temperatures. In very narrow temperature range be-
low the M-point, the system separates into electron-poor
and electron-rich regions with the ferromagnetic state.

Figure 3 shows temperature behaviour of the specific
heat

cv(T ) =
dEF(T )

dT
(59)

for J∗ = 0 and different values of n. The internal energy
EF(T ) is calculated for the ferromagnetic phase from (35),
and

EF(T )
N

= −1
4
J∗
[
n2 − (ms)2

]
+W

∑
σ

(
1 + σmf

2

)3/2

× 1
π

π∫
0

dt sin2 t cos tf(aσ cos t+ σν). (60)

It is interesting to compare the results in Figure 3 with
the behaviour of cv for the Heisenberg model in the mean-
field approximation. The inset to Figure 3 shows depen-
dence of 1 − cv(T )/cv(TK) on (mf )2 for the same value
of n as in Figure 3 (the same type of curves) and for the
Heisenberg system (dotted curve). We observe a similar
behaviour of dotted and solid (n = 0.6) curves in a wide
temperature range below TK. Temperature range of this
similarity are decreased for n = 0.7 and n = 0.8. In any
case, we approximately have

cv(T ) = cv(TK)− γ(n)(mf )2,

γ(n) > 0, at (TK − T )/TK � 1. (61)

5 Antiferromagnetic phase

In the case of the antiferromagnet with two sublattices A
and B, we have

mf
i = qim

f , ms
i = qim

s, (62)

qi =
{

+1, i ∈ A
−1, i ∈ B , (63)

and the equations for Giisσ and Σii
sσ can be also solved in

analytical form for the Bethe lattice (z →∞). As a result,
we obtain

Giisσ = G(1)
s + σqiG(2)

s , (64)

G(1)
s = −

1
2m

fν

Ω2
s − ν2

+
8
W 2

Ωs

{
1− 1

Ω2
s − ν2

√
(Ω2

s − ω2
1)(Ω2

s − ω2
2)
}
,

(65)

G(2)
s =

1
2m

fΩs

Ω2
s − ν2

− 8
W 2

ν

{
1− 1

Ω2
s − ν2

√
(Ω2

s − ω2
1)(Ω2

s − ω2
2)
}
. (66)

Here,

ω2
1 = ν2 +

W 2

8
α2

1, ω2
2 = ν2 +

W 2

8
α2

2,

α2
1 =

1
2
− 1

2

√
1− (mf )2, α2

2 =
1
2

+
1
2

√
1− (mf )2.

(67)
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With the help of equations (65) and (66), one can ob-
tain the following equations

mf = tanh
1
2
λA, (68)

λA =2 ln
(

1+eβ(µr+ν)
)
− α1α2

2
π

π/2∫
0

dt
α2

1 sin2 t+α2
2 cos2 t

×
{

ln
(

1+eβ[µr+E(t)]
)

+ln
(

1+eβ[µr−E(t)]
)}
, (69)

ms = mff(−ν)− [1− (mf )2]ν

× 2
π

π/2∫
0

dt sin2 t cos2 t

α2
1 sin2 t+ α2

2 cos2 t

f [E(t)]− f [−E(t)]
E(t)

,

(70)

n = mff(−ν) + [1− (mf )2]

× 2
π

π/2∫
0

dt sin2 t cos2 t

α2
1 sin2 t+α2

2 cos2 t

(
f [E(t)]+f [−E(t)]

)
,

(71)

E(t) =

√
1
8
W 2
(
α2

1 sin2 t+ α2
2 cos2 t

)
+ ν2 (72)

describing the antiferromagnetic state of the Bethe lattice
in the dynamical mean-field approximation.

The equations (68), (70) and (71) determine mf , ms

and µ for given n and J∗.
We also give the expression for the internal energy of

the antiferromagnetic state:

EA(T )/N = −1
4
J∗[n2 + (mf )2] +

1
4
W 2[1− (mf )2]

× 1
π

π/2∫
0

dt sin2 t cos2 t
f [E(t)]− f [−E(t)]

E(t)
. (73)

It is seen from (72) that the band picture is defined by
two subbands. The boundaries of these subbands are

−
√

1
8
W 2α2

2 + ν2, −
√

1
8
W 2α2

1 + ν2 (74)

for the bottom subband and√
1
8
W 2α2

1 + ν2,

√
1
8
W 2α2

2 + ν2 (75)

for the top subband. The subbands are mixed into one
band when mf = ms = 0.

Assuming that the ferromagnetic alignment is absent,
let us discuss a possible phase separation between the anti-
ferromagnetic and the paramagnetic states. Investigation
of the compressibility dn/dµ with the help of the equa-
tions (68), (70) and (71) shows that our DE system is
unstable with regard to PS only for J∗ > J∗c ' 0.318. It

turns out that PS occurs inside of the antiferromagnetic
phase for J∗ near J∗c . In contrast with the ferromagnetic
case, the PS state has a maximum concentration range
at T = 0. When T is increased, the PS is strongly sup-
pressed. For example, the compressibility is negative at
0.882 < n < 0.990 (T = 0) in the case of J∗ = 0.34 and at
0.749 < n < 0.996 (T = 0) for J∗ = 0.4. These concentra-
tion ranges correspond to the antiferromagnetic state of
DE system at T = 0 When T is increased, the concentra-
tion range of negative compressibility is decreased, and PS
vanishes at the phase point (n = 0.936, T = 0.0023) for
J∗ = 0.34 and at the phase point (n = 0.867, T = 0.0114)
for J∗ = 0.4. These critical phase points also belong to
the antiferromagnetic phase region.

When J∗ > 0.4, PS between antiferromagnetic and
paramagnetic states is possible. However, these values of
J∗ are very large (see Fig. 1), and we do not discuss this
case.

Thus, if we do not include ferromagnetic state, phase
separation of any type is lacking for J∗ < J∗c . Taking
into account that the experimental values of J∗ for the
manganese oxides do not exceed J∗c , one can conclude that
PS connected with antiferromagnetic and paramagnetic
states is not realized in real materials from the standpoint
of our approach.

6 Phase diagram at T = 0

Our phase diagram of the model (10) includes two phase
states (ferromagnetic and antiferromagnetic) at T = 0.
Paramagnetic phase is the high-temperature state, and we
do not consider a phase with incommensurate correlation
and a canted phase.

When instability of the paramagnetic state towards
two ordered phases was discussed (Sect. 3), we have
marked that there is a phase region in which regions of
instability of the paramagnetic phase with regard to an-
tiferromagnetic and ferromagnetic states are overlapped.
This common phase region lies below the point of intersec-
tion of the antiferromagnetic and the ferromagnetic tran-
sition curves for given J∗ (see Fig. 1). When T = 0, the
discussed region has a maximum spread over the electron
concentration. In Figure 4b, it lies between dashed and
dashed-dotted curves which are the second-order transi-
tion curves:

J∗F =
Y (0)

V 2(0)− Y 2(0)/a2
(76)

for the ferromagnetic transition and

J∗A = − Y (Q)
Y 2(Q)/a2 + f2(0)

(77)

for the antiferromagnetic transition. All the quantities in
(76) and (77) are taken at T = 0.

Question about the choice of the state, which is real-
ized in a given phase point at T = 0, is solved by the com-
paring of the ground-state energies. The energies of ferro-
magnetic and the antiferromagnetic ground states can be
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Fig. 4. (a) Ground-state energies EP, EF and EA as functions of n. The straight line ab realizes Maxwell construction. nps is
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antiferromagnetic (ferromagnetic) second-order transition. EF = EA on dotted curve. The PS region lies between solid curve
and the axis n = 1. The pure ferromagnetic state is on the left from solid line and the pure antiferromagnetic state is on the
axis n = 1.

obtained from (60) and (73) with the corresponding equa-
tions for mf , ms and µ taken at T = 0. The expressions
for EF(T = 0) ≡ EF and EA(T = 0) ≡ EA are coordi-
nated with the corresponding equations for mf , ms and µ
so that the total derivative of EF and EA with respect to
n is equal to µ.

Figure 4a shows the energies EF, EA and EP (EP is
the energy of paramagnetic ground state) as functions of
n for J∗ = 0.1. It is seen that EF < EP and EA < EP.
It is also seen that there is a value of n = n∗ at which
EA = EF. Therefore, the ferromagnetic state is realized
at n < n∗ where EF < EA, and EA < EF when n > n∗.
Here, the antiferromagnetic state is the ground state.

Thus, the ground-state energy of DE system as a func-
tion of n is presented by EF when 0 ≤ n ≤ n∗ and EA

when n∗ ≤ n ≤ 1. However, this function is not con-
vex function (see Fig. 4a). The Maxwell construction (the
straight line ab) determines two values of n: n = nps
and n = 1, and DE system separates into electron-poor
(n = nps) domains with ferromagnetic state and electron-
rich (n = 1) domains with antiferromagnetic state.

Figure 4b shows the PS phase region limited by the
solid curve and the axis n = 1. The pure antiferromagnetic
state takes place only at n = 1. On the dotted curve,
EF = EA.

It should be noted that PS of this type was first dis-
cussed by Visscher [42] for the Hubbard model and Nagaev
for the s− f model [43] in the strongly correlated regime.
Nagaev has shown that PS state is energetically preferable
in contrast with a canted phase (see also Refs. [30,44]).

Taking into account the absence of the phase sepa-
rations connected with antiferromagnetic and paramag-
netic states for J∗ < J∗c at any temperatures, one can
roughly represent a temperature phase diagram for a given
J∗ < J∗c with the help of Figures 1 and 4b. Such a tem-
perature phase diagram must consist of the corresponding

phase-transition curves (antiferromagnetic and ferromag-
netic) from Figure 1 and two curves defining a PS region
between antiferromagnetic and ferromagnetic states. One
of them connects the point of intersection of antiferro-
magnetic and ferromagnetic transition curves with a point
on the axis n = 1 at a non-zero temperature. The other
curve connects the same point of intersection of transition
curves with a point on the axis T = 0. Coordinate of the
last point can be obtained from Figure 4b for the corre-
sponding value of J∗. High-temperature phase separation
between electron-poor paramagnetic region and electron-
rich antiferromagnetic region does not occur at J∗ < J∗c .

Recently, temperature phase diagram was investigated
within the s − f model with classical localized spins for
Bethe lattice [10,11,30]. Starting from a random spin con-
figuration, the dynamical mean-field equations [29,30] for
this model was solved iteratively in the case of 2I/W =
4.0. The phase diagram obtained in references [10,11,30]
is coincided in common features with our consideration.
But in contrast with our conclusion about the absence
of PS between antiferromagnetic and paramagnetic states
at J∗ < J∗c , it contains such PS region so that the
pure antiferromagnetic state is realized only on the axis
n = 1 at any temperatures. Unfortunately, the authors of
references [10,11,30] did not investigate PS of this type
as a function of W/I but it seems that there is a critical
value of W/I below of which this PS is lacking.

In connection with it, it is interesting to mark that the
mathematical structure of the model (10) is similar to the
one of the t− J model. (See, for example, Ref. [45] about
the equivalence of the s − f and Hubbard models in the
strongly correlated regime). Investigation of the PS be-
tween antiferromagnetic and paramagnetic states for this
model shows that majority of the authors concludes that
PS of this type is impossible for small values of J .
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7 Concluding remarks

In the present paper, we have offered a simple model of
DE system. This model takes account of the main physical
feature of DE which is the parallelism of itinerant electron
spin and localized spin in the same site.

Mathematical simplicity of the model allows to carry
out the correct investigation of DE in the frame of the
dynamical mean-field approximation and to obtain the
equations describing the main ordered phases in analytical
form. Using these equations, we have investigated the in-
stability conditions of the paramagnetic phase towards the
ferromagnetic and antiferromagnetic states, some proper-
ties of the ferromagnetic phase (such as the negative tem-
perature shift of the chemical potential, the temperature
dependence of the thermopower and the specific heat near
the critical point, the temperature PS between ferromag-
netic and paramagnetic phases) and the antiferromagnetic
phase. Phase diagram including a PS between antiferro-
magnetic and ferromagnetic states was built at T = 0. It
was shown that PS connected with the paramagnetic and
the antiferromagnetic states is lacking for J∗ < J∗c ' 0.318
for any temperatures. It seems that these values of J∗ are
relevant for the real materials, and PS between antiferro-
magnetic and ferromagnetic states is the main type of PS
in the manganese oxides.

An important aspect of study of DE system is discus-
sion of possible non-Heisenberg behaviour of the physi-
cal quantities in dependence on the electron concentra-
tion. This peculiarity was still marked by Anderson and
Hasegawa [2] in temperature behaviour of the uniform sus-
ceptibility.

Summarizing our results, one can say that, in the main,
our DE system is similar to the Heisenberg ferromagnet
with non-regular localized spins, and it can reveal a non-
Heisenberg temperature behaviour of magnetic quantities.
(It should be spoken about the Ising-type behaviour be-
cause the model (10) ignores transverse spin fluctuations.)
In connection with it, it is interesting to investigate the
critical behaviour of DE system with the help of the exact
high-temperature expansion. It seems that a simplicity of
our model allows correctly to carry out this calculation.

Of course, the model (10) has a limited practical inter-
est and it can be used for real materials with a strong mag-
netic anisotropy along the z-direction. However, it seems
that our model can be useful for general understanding of
physical properties of DE systems in a wide temperature
range.

This work is supported by Russian Fond of Fundamental Re-
search, project 99-02-16279.
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38. H. Röder, R.R.P. Singh, J. Zang, Phys. Rev. B 56, 5084

(1997).
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